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IMPLEMENTATION SCHEME FOR RECURSION

IN SPECTRAL DIMENSION

I. Introduction

One of major difficulties for thermal imaging processing is background suppression. Many

different approaches have been proposed over the past years ranging from spatial domain

analysis to frequency domain analysis. Recently consideration of coupling temporal correla-

tion with either spatial or spectral correlation is also investigated to combat the degradation

caused by poor signal to noise ratio or low concentrated clouds against background.

In [1,2], Warren and his colleagues proposed a mixed approach to process spatial images

in frequency domain by using a first order autoregressive time series to account for temporal

correlation. As a result, Warren developed a recursive algorithm for detectors to improve

detection performance of low constrast signal to background clutter ratio. Although Warren

also mentioned a possible approach by using a Kalman filter, he never discussed it. In this

report we adopt a Kalman filter approach to derive similar results to that obtained by using

an autoregressive model. This approach is more intuitive than Warren's approach because

recursion is the nature of a Kalman filter.

It is known that Kalman fiter has a wide range of various applications. The most im-

portant feature Kalman filter possesses is recursion which can be implemented in real time

processing. Because of its nature of updating information as time goes along it is worthwhile

to consider Kalman filtering approach as opposed to Warren's approach. The main idea of

Kalman filter is to introduce a new process, which is called innovation process, generated by

the observation model. The great advantages of using the innovation process is orthogonality.

The principle of orthogonality decorrelates observations obtained from different time frames.

In the case of a Gaussian process, the induced innovation process becomes an independent

process of time. As a consequence, if a thermal image detection problem can be transferred

to an equivalent detection problem in terms of innovation processes, using the independency

of the innovation process immediately will significantly reduce computational complexity

and tremendously simplify mathematical derivations. This is demonstrated by comparing

the Kalman filter approach to Warren's work. The use of the innovation processes enables
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us to develop a recursive detection algorithm. Since the state and observation models used

in Kalman filters are very general, the derived recursive algorithm will have more broader

applications than does Warren's algorithm.

Both Warren's and Kalman filtering approaches are developed based on a single spectral

band. However, in some practical cases, the target in one spectral band will have a large

contrast with high altitude clouds and no contrast with low clouds, while in a second spectral

band the target would have no contrast with high clouds but a large contrast with low-

altitude clouds. Therefore, using two spectral bands can ensure a good contrast for any

kind of cloud background. Because of advantages of using multiple bands the extension of

these two approaches to multiple spectral bands is investigated. While it is useful to process

multiple bands, there is an extra factor to be considered which is spectral correlation. In

general, the dimension required for a detector to use multiple bands will be 4 times of that

for a single band. To avoid computational load for real time processing two suboptimal

models are proposed which are characterized by separable spectral correlation and separable

spectral Markov spatial correlation respectively. These two model have been used in some

applications in adpative filtering [3,4].

This report is organized as follows. Section II reviews the signal model used in thermal

imaging processing and Section III is devoted to the target model. Both were developed by

Warren [1,2]. Section IV rederives Warren's recursive detection algorithm which will serve

as a basis for extension to multiple spectral bands. Section V presents a new approach

to developing a similar recursive algorithm to Warren's algorithm by using well-knowing

Kalman filter theory. Section VI is to extend results obtained in Sections IV and V to multiple

spectral bands, narticularly emphasizing two spectral bands. Section VII is a conclusion

section which suggests some directions for future investigation and study.



LI. Signal Model

The signal model to be considered in this report is suggested by Warren [1]. In this section

we follow his approach and describe the derivation.

The optical power collected on the thermal detector plane at pixel location x, = (xi, yi),

Pd, (xi, tk) can be written as the convolution of the entrance pupil signal power P, (0, tk) and

system point spread function PSF:

Pd,(xi, tk) = f P,(0, tk)PSF(x,/f - O)dO2 + P,,(xi, tk) (1)

Here Pd(xi, tk) represents a time series of images labeled by index k and multiple spectral

bands labeled by index j and is a generalization of a single spectral filter and single time

expression:

Pd(Xi) = J P,(O)PSF(xi/f - O)dO + P,(xi)

where xi denotes the pixel location in the detector plane, f is the receiver effective focal

length.

The PSF models the combined effects of the thermal sensor on the spatial resolution

of the images which includes terms that model the optical components of the system, finite

detector size, and effects associated with scanning, electronics, and time response of the

detector. Although in general the PSF depends upon spectral band, for well-designed

systems operating in the 8-12 yim band such as TICM-II, the image quality is relatively

uniform with wavelength. P, (xi, tk) is additive, zero-mean detector noise in spectral band

j, time k and is uncorellated with the signal. The entrance pupil signal power P,, (0, tk)

labeled by line-of-sight direction vector 0 is given by

Po,(O,tk) = ARfQRfOj {Fj(A)[BA(Tc) + rA(A)e -pACL(tk)(B(TB(O,tk)) - B(Tc))I} (2)

in terms of the Planck function at temperature T and wavelength A:

B2(T) 2hc 2 [e 1]1.
As



Because both the detector noise P, and the clutter background temperature field TB(O)

are random variables, so is the detector power Pd aid must be characterized statistically. Fe

the vapor cloud image enhancement/detection algorithm, only the first and second statistics

of Pd are of interest. Denoting ensemble average by bar, the first-order statistic, mean can be

given either by E[Pd, (xi, tk)] or Pd, (xi, tk), and the second order statistc, covariance matrix

Apd,,, (xi, tk, xI, tk,) given by

APd, (xi,tk, xi,tk') E{[Pd,(xi, tk) - Pd,(x,tk)][Pd,,(xi,,t4,) - P,,(xi,,tk,)]}.

In order to evaluate these moments we assume that the clutter temperature field TB(G, tk)

to be spatially wide-F-nse stationary, i.e., TB(O, tk) = TB and

TB,k,(O,O') =_ E{[TB(O, tk) - TB][TB(O',tk') - TB]}.

These conditions mean that the background fluctuations are uniform over the image field.

Evaluating the mean of Pd gives

Pd(X)= P,(O, tk)PSF(xi/f - O)dO + P,(xi) (3)

with

P.,(0, k) = ARflRCO 0 {Fj()[BA(Tc) + 1A(A)e-p.CL(itk)(B\(TB(O, tk))- B(Tc))]} (4)

By expanding B\(TB(0, tk)) about 7B

B\(TB(0, tk)) = BA(TB) +

22
where aTB is the constant variance of the temperature background field, and B" is the

second derivative of the Planck function with respective T. Numerical evaluation of B" for

TB =290'K at A = 10pim shows that By/B = 1.8 x 10- , so for r0 T 5 10'K there is less

than one percent error in approximating

B,\ (TB(0, tk)) ;:z B\('TB).5)
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Since

E[P.B' (9, t~)P"?(x,', 1k')] = 0,

Apd 3'(Xi, tk; Xi', tk') = JPSF(xilf - O)A3 j ,(9, tk; 0, tk')

PSF(xi/f - 0)}d02 d9 2 + A,,'(0, tk; 0%,tk') (6)

with

A, '(9, tk; 9', tk') {(ARQRf-o) 2 f Fj(A)F1(A)TA(A)TA (A)eV-pCL(Gtk)-pCL(O.tk,)] }X

E{[BA(TB(9, tk)) - TB(O, tk)][B ( TB(9', tk')) - TB (9'. tk')IdA'dA2

By expanding B,\(TB(9,tk) around TB, i.e.,

BA (TB (0, tk)) IT; -- 7B + B'(TB)(TB (0, tk -TB~)

we obtain the following equalites:

E{ [BA\(TB(9, tk) - TB(9, tk)][B'( TB(9', 1k') - TB(9', tkl)]I

-E{[B'(7B)(TB(9, tk) -T)[(B')(7)(B(' B k' B

=B'(7B) [E[TB (0, tk) - T)][(TB (0', t k') - B)}B,\,(TB) (7)

where B'(7B) is the first derivative of the Planck function evaluated at 7B. If we denote

Equation (7) can be rewritten as

which is a factored form of spectral and spatial components.

By taking advantage of equation (8)

AS, (0, tk; 0', t1) =G G(0, tk ) ATB,\BG G(9' t k1) (9)



with

Gj(0, tk) =ARQRfof Fj(A)rA(A)B'(TB)e-pACL8,tk)dA.

Finally, the signal model is derived as follows.

(Pd-E{Pd} )T At'(Pd-E{Pd})

pdf(Pd) = 1 e- 2 (10)
S27rN2ML IAPd I

where the detector power has been expressed as a vector having components

(Pd)ijk = Pd, (xi, tk)

and i, 1 < i < N 2 , labels the detector plane pixel, j, 1 j <L, labels the spectral band, and

k, 1 < k < M, labels the frame time. The mean and covariance of Pd are given by equations

(3) and (9) respectively.
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III. Target Model

To construct a target model appropriate for image enhancement of vapor clouds against

clutter backgrounds we rewrite equation (2) as

7(O, tk) = PA, + [-[e-pXCL(etk)]j

where

PA, = ARQR0oJ fF:(A)B,(Tc)dA,

and

PB = ARfQR'O J Fj(A)rA(A)ABAdA,

with AB\ = BA(TB)- BA(Tc), and a vapor component defined as

f Fj(A)rA(A)[e-pxCL(e'tk)IAB\dA

f F,(A)TA(A)AB.\dA

The above equation can be interpreted as a spectral average over the jth spectral band

of the transmission loss produced by the path-integrated concentration CL(O, tk) along the

line-of-sight 0 at time tk. For narrow band optical filters, rA and AB\ are approximately

constant over the support of the bandpass function F, giving

[e-pCL(8Utk) =- J Fj(A)[e-P.\CL(O"k)]dA

with AAj f Fj(A)dA the effective bandpass width of the jth optical filter.

13



IV. Recursive Detection Algorithm Developed by Warren

The main result in Warren's work is to present a recursive detection algorithm to process

thermal images in frequency domain. The idea is to model the background as a first order

autoregressive time series by which the detection of vapor clouds can be done recursively in

time frames. The approach is to use the Markov property provided by the autoregressive

model to decompose a test statistic into two parts, a test statistic obtained from the preceed-

ing time frame and observation generated at the present time. Because of Markov property,

the past information only depends on the time frame immediately before the current time

frame. Therefore, the latest test statistic already provides all the past information. By tak-

ing of this advantage Warren derived a recursive algorithm in time for real time processing.

In this section, Warren's algorithm will be rederived. However, there is an alternative which

has a more general aspect than does Warren's approach, that is Kalman filter approach

which will be investigated in detail in the next section.

Image Model

The image model used in Warren's work is described by

H0 : Ik(x) = Bk(x) + Nk(x)

versus (11)

H,: Ik(x) = Tk(x) + Bk(x) + Nk(x)

where the background is modeled by a first order autoregressive time series

Bk(x) - -=EY G(x - x')[Bk_ I(x) -B-]+ ek (X), (12)

X1

and their corresponding correlation matrices are

AB(X, X')kk, = E[[(Bk(x) - 7)(Bk,(x) - B)] (13)
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A,(x, x')kke = E[ek(x)ek'(x)]

= [ABkk'- G(ABkk, OG](x,x')6kk, (14)

C,,(x - X')6kk. = E[(Nk(x) - 77)(Nk(x) - 7)]

Tk(x) = AS(x-xT(k))

E[Ik(x)Ho] = 7o = B + "

E[Ik(x)jH,] = IT = Tk(x) + 70

As mentioned in Warren's work, because of correlations between different time frames-

the image model described above is not directly useful for developing detectors whose test

statistics take the form of ratio of one likelihood function to another likelihood function. In

order to circumvent the dilemma, Warren Fourier transferred samples in spatial domain to

frequency domain with which statitsical and computational advantages can be gained.

Algorithms Developed in Frequency Domain

ak(U) = Z[/k(x) - 7o]e -i2r X

x

bk(u) = E[Bk(x) -le - 2 " "
x

nk(u) = -[Nk(x) - ]e - 2ux
x

tk(U) = "[Tk(x)]e-i2u'X = Ae-'2"uXS(u)
x

Based on the above discrete Fourier transforms, an equivalent test hypothesis problem

to that described by (11) is given as follows.

H0 : ak(u) = bk(u) + nk(u)

versus (15)

H 1 : ak(U) = tk(U) + bk(u) + nk(U)

15



where we assume E[ak(u)JHo] = 0 and E[ak(u)IH] = tk(U). Under mild conditions, the

correlation matrix of ak(u) betwen ak'(u) is given by

Aa(u, u')kk, = E[bk'(u)bk'(u')] + E[nH(u)nk'(U')]

where H is a Hermitian conjugation. which results in

ha(u, U')kk' = {E[b'(u)bk'(u')] + E[Ink(u) 2]6kk,}62 (u - u')] (16)

Since the backgorund is assumed to be a first order autoregressive model, the correspond-

ing discrete Fourier transforms (DFT) in frequency domain is given by

bk(u) = '(u)bk_,(u) + /3k(U) (17)

where

-y(u) = ZG(x)e - 'wux (18)
X

3(u) = Ze(x)e- i27u'x (19)
X

Let (Ib(u) and 4 ,,(u) be corresponding DFTs of Ab(x) and C,,(x). Then

4%(U) = 1 Ab(x)i , uwx (20)
X

4C(u) = E C,,(x)e - i2 ,ruX (21)
X

with

E[Ok(u)j = 0, (22)

E[O3k(u)/ 3k,(u')] = Oa(u)b 2 (u - U')bkk' (23)

00(u) = [1 - 17(u)1214b(u). (24)

Combining the above equations yields, for k > k'

Aa(U)kk' - {[_y(u)I - k' 4b(u) + 4D(U)bkk,}Ikk'(U). (25)

16



As mentioned in Warren's work, under mild conditions the probability density function

of the corresponding DFT is also a Gaussian distribution under the hypothesis Hi and given

by

rm (1 M l_[%kl Z,__(ak(u)[aki -- )])HA -l(u)kk[ak(u)aki(u)]]}

p(a(M)IH) = 7Mn2 IA.(M) expf- 2L E,

where we define

akli(u) E[ak(u)IH]

akIji(U) E[ak,(u)IHj]

and Aa(M) is the autocovariance matrix of the random vector [ak(u), ak-1.(u),-, (u)].

By defining

a(k) ak(u) =[ak(u), ak1(u), ... a,(u)]

a(k + 1) ak+(u) = [ak+(u),ak(u)]T

we obtair.

M,M

Ija(M) - a(M1i),I ( I - E '(ak(u) - -jji(u)) RA-l(u)kk,(ak1,(u) - ak'li(U)). (26)
k,k'=l U

Taking logorithm of ratio of p(a(M)H 1 ) to p(a(M)IHo) yields the log likelihood ratio

test given by

LRa(m)(A,XT) = log p(a(M)IH1 ) (27)
p(a(M)IHo)"

The log likelihood ratio test LRa(M)(A, XT) obtained from the above equation is the

desired detector to be used for thermal image detection. Unfortunately, the DFT of the

autocovariance matrix generated by a(k), Aa(k) becomes very large as time frames k are

accumulated. In particular, calculating the inverse of A.(k) becomes extremely complicated.

One way to avoid this difficulty is to compute LRa(k)(A, XT) recursively until k reaches M.

17



In what follows, we follow Warren's approach to derive a recursive formula for updating

the log likelihood ratio test when time moves along.

Recursive Formula

First of all, we express the autocovariance matrix of a(k + 1)(u) at time k + 1 in terms

of that of a(k)(u) at time k,

Aa(k+1) a(k)] (28)

where

AO = + 'D"

= 1

In order to invert the matrix we use the following matrix identities in matrix algebra.

Assume that the matrix E has the following form:

[-= C D "

Then the inverse of E can be calculated as follows.

-A + A- D(B - CA-'D) -'CA - 1 -A-'D(B - CA- 1D) - 1

= -(B - CA-'D)-1 CA- 1  (B - CA- 1 D) -1

[ (A - DB-C)- l -(A - DB-1 C)- 1 DB 1 (29)
= -B 1 C(A- DB-1 C)_' B-1 + B 1 C(A- DBIC)_'DB .

Applying the above matrix identities (29) to Aa(k + 1) yields

Aa-(k + 1) = - Yk 5 1 A A -IY (30)-YkA; Aa-1(k) + YkAk'Y k

where

A, = A -kY,, (31)

18



Yk =A.-(k)Dk (32)

Ak+1 - 'b(l - II2) + 4)(1 + I Y2) - 24 Ak1 , (33)

yf+ = - kY ki] (34)

Now if we define

a(kti E[a(k)IH,]

a(k+ li)= E[a(k+ 1)H]

and substituting equation (30) into equation (26) yields

Ila(k + 1) - a(k + 11 )12 = a(k) - a(k- II;-- l^;,c(k+, 1)~ k a -k(k)

+Ilak+l - ak+1IiIAZ.,

and

JAa(k + 1)1 = j lkj Aa(k)l-

Using

p(a(k + 1)IHj) = p(ak+lH, a(k))p(a(k)IH) (35)

we derive the following conditional probability density function given that Hi, a(k).

_ p(a(k + 1)In,) (36)
p(ak+IIn,,a(k)) = p(a(k)IH,)

1 1x 11 - I
N= - expl-jak+, ak+ijk,ilA,1 } (37)
7'I~kI 2

where

ak+llk,i = k-+,l, + Yk'{a(k) - a(kji)} (38)

= ak+,i, + 'IH{(1 - ,'tLA )(ak(u) - a(kli)}
+4b"A-l- - a(k + li) (39)

Plugging equation (37) into (35) results in a desired recursive formula for log likelihood

ratio test LRa(k+l)(A,XT) in terms of LRa(k)(A,XT).

19



LRa(k+l)(A,XT) = LRa(k)(A,XT) - Ial,+111 - akik

+ Ijak+1lo - ak+Ijk,OIL-1 (40)

Using equations (38-39) to interpret (15), we obtain

ak+ljko = Y~/a(k) (41)

ak+llkl = tk+l + YH(a(k) - t(k)). (42)

Substituting equations (41-42) we further obtain

LRa(k+l)(A,XT) = LRa(k)(A,XT) - ''tItk(~ -
2 h

+[tk+l _ y~t (k)H[A-lI[ak+l - YHa(k)] (43)

Finally, if we define

ik+11k yHt (k)

^ 1 -4 ;lk- + Z k/ .. liklk-l

then a nice recursive form can be derived and given by

LJ~a(k+l)(A,XT) =LRa(k)(A,XT) - jjkI- klk &1(44)

+[tk+l - ik+11k ][Ak 1aJ - ak+11k,O] (45)

where

ak+ilk,O =H[i- kIa+ n1(k.,)I(46)

with initial conditions

LRa(O)(A,XT) =0, ill0 = 0, alloi = 0

20



V. Recursive Detection Algorithm Using Kalman Filtering

Approach

The idea of using Kalman filter theory is obvious because of recursion. Unlike Warren's

work, this approach can be used to model background of different types. Recall that the

background in Warren's work was assumed to a first order autoregressive (AR) model. As a

result, Warren could use the Markov property induced by the AR model to derive a recursive

formula for detectors described by a sequential likelihood ratio test statistic. In what follows,

we will still adopt Warren's model, instead, consider a different approach to derive a similar

recursive formula for detectors. The approach to be presented is to use Kalman filter theory.

The major advantage of using a Kalman filter over Warren's approach is that the formula

to be derived can be extended to cover more general models to describe background.

The core of Kalman filter theory is to introduce a new process, innovation process sug-

gested by Kailath. Instead of directly dealing with the observation process, the innovation

process is generated by collecting and updating new information as time goes along. In other

words, given an observation process it is not necessary to store all information available up

to the processing time because some information will be useless and some will be repeat-

edly stored which wastes storage. A more efficient way to manage information is to store

all necessary information only once and dump unnecessary or unwanted information. The

innovation process is developed based on this need. In general an observation process can be

decomposed into two processes, predicted process and unpredicted process. The predicted

process contains all previous information required for processing and the unpredicted process

presents new information available at the processing time but not contained in the predicted

process. Such unpredicted process resulting from the observation process is generally referred

to as an innovation process.

In Kalman filter theory two models need to be specified which are a State Model

described by a state or process equation and an Observation Model described by a mea-

surement equation. In order to apply Kalman filter theory we interpret the image model

21



used in Warren's work as follows.

Let the background bk(u) be a state model chracterized by the state equation or process

equation under hypothesis Hi given by

bk(u) = -(u)bk-l(u) + /k(U) (47)

and the observation model akli(U) depicted by measurement equation given by

akli(u) = Skli(U) + bk(u) + nk(U) (48)

where skjo(u) = 0 for H0 , no target present and skll(u) = ti(u) for H1 , target present .

Since the derivation for a recursive Kalman filter under hypothesis H1 is exactly the same

as hypothesis Ho, we only consider the case for H0 to simplify notations.

Because there are two models involved we define two innovation process, the unpredicted

observation process ak(u) derived from the measurement equation and the predicted state

error process Ek+l,k(U) derived from the state equation with their associated correlation

matrices given by

ak(U) ak(U) - aklk _(U)

k,k-(U) -- bk(u)- bkk-(U)

H xe - 2 ux

x(IDc,k,k_,(u) = E[Ck,k_,(u)Ek,(u) ] = A,,k,k-,(X)e - 2 u

X

where the notation H is a Hermitian tranfomation, Aa,k(X) and A,,k,k-l(x) are correlation

matrices of ak(x) and fk,k-l(X) obtained in the spatial domain time k, k - 1 respectively.

As we can see from above, the innovation process ak(U) is the new information available

which is contained in the process ak(U) observed at time k but not in aklk..(u) where is the

predicted process obtained from the past information up to time k - 1. Similarly, fk,k-(U)
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is the innovation process represents the new information provided by the state model bk(u)

observed at time k and is obtained by substracting the predicted process bkk-I(U) from

bk(u) so that the predicted information from bk(u) up to time k - I can be removed. One

of most important features that innovation processes possess is that they are white, i.e.,

independent processes. The property of independency makes problems extremely easy to

deal with. The observation of such independency is intuitive. Since an innovation process

contains unpredicted new information obtained at different time frames, the information

obtained at a certain time frame must be independent of other time frames due to the

nature of unpredictability. The relationship between these two innovation processes can be

demonstrated by the following equation.

k (U) = bk(u) + nk (u) - bklk 1(u)

= Ekk.11) + nk(u)

and

4 W,,k(u) =E[f-k,k....(u)fk'k..(U)] + 0-(U)

- e,k,k-1(U) + D-(U)

Suppose that we fix time k and consider an estimate of bi(u) at time 1, bllk(u) based on

the information available up to time k. As we mentioned previously, the innovation process

%(u) provides new information at time frame j. It is obvious that bilk(u) can be expressed

in terms of a linear combination of a3 (u)s from j = 1 to k .

k

bilk(u) = E Daj(u). (49)
j=1

In order to determine the coefficients D1,j, we use the orthogonality principle which gives

E[1,.k(u)a"(u)] = E[(bl(u)- blk(U))a"(u)] = 0; m = 1,2, .. k,

and results in

E[(b,(u)a"H(u)] = Efb 1k(u)aM(u)
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k

= E{Z 4 ,,(u)}a()

DI, can be therciore solved by

Dj,. = E[b(u)am,(u)]4Q"r(U).

Plugging the solved D1,, into equation (49) yields

k

bilk(u) = Z{fE[bi(u)a'(u)]ID-(u)1o 3 (u).

Now if we let I = k + 1,

k

bk-IlkU)= Z{fE[bk+, (u)a"'(u)]'ID-(u) }a,(u)
-7='

k-I

-ZE[bk+I(u)a'(U)]}(uD Ju + ~k+(uk '()4(U)ak(U)
j=1

k-I

-ZE[{-y(u)b~()1k(U) }Q(U]'a()%U

+E[{-j(u)bk(u) + I3k(U)}ak'()]O(u'k~
k-i

= y(u){EE[bk(U)aH'(U)]t-(U)ajj
j=1

- y(u)fbk.(u)a (U){ED-b(U)Cfk(U)]4,(} a

=- y(u)bklk..,(u) + Gk(u)ak(uI)

where Gk(U) is called the Kalmnan gain given by

Gk(U) = -y(u){E[bk(U)atk'(u)]4D-,I(u)}

= y(u){E[bk(u)(bk(U) -bk 1 ..,(u) +nk(u)HI k~A)

= y(u){fE[bk(U)(fk,k..,(u) + flk(U)] Qk(U
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Since E[bkk1(u~klI(u)] = 0, we can add it to the above equation and obtain

Gk(U) = -y(u){E[(bk(U) - bkk1(u))('kli(u))]4" u)}(50

= -yuf[E~-()kkiU1bkk()(51)

= y(U)'1D,k,k...l)(U)U). (52)

As shown in equation (52), the formula for Gk (U) is not very useful because calculating the

Kalman gain Gk requires to compute qt,,k,k-1(U) which is still unknown. In order to overcome

this difficulty, we derive a recursive formula for -4),k,k.1I(U).-

Consider the predicted state error at time frame k + 1, Ck 1Ak(U),

f-k+l,k(u) =bk+l (U) - bk+llk(U)

-y (u) bk(U) + /3 k(U) - -Y(U)bkl(u)- Gk(U)ak(U)

-- y(u)[bk(U) - bkjk 1k.(u)] - Gk(U)ak(U) + IOk(U)

- j(u)[bk(u) - &l-(u)] - Gk(U)[ak(U) - ilklk-.1(U)] + /3k(U)

-- y(u)[bk(u) - bklk..l(U)] - Gk (U)[(bk (U)+ flk(U)) - bklk..l(U)] +&/~(U)

-1 y(U)[Ek,k.-.I1(U)]I - Gk(U)fk,kI(u) - Gk(u)nk(U) + /3k(U)

- h'u) -Gk(u)]fk,k I (U) - Gk(u)nk(u) + flk(U).

This implies that

4De,k+1,k(u) = E[fk+i,k(u)6k+lk(u)]

= [-y(u) - Gk(u)I ,k,k-(u)[/(u) - Gk(U)]'

+E[,3k(u)I'(u)I + Gk(U)4(u)Gk()

where E[Ok(u)13'(u)] = [1 - Iyf(u)12146(U). If we expand the above equation, we obtain the

called Riccati difference equation,

(Dek+i,k(U) = -y(U),k,k (U)_fH(U) + E[ak(u)fOk(U)HI

= -Y(U)4(,k,k(U)-YH(U) + [1 - huI2]4bNu)
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where we denote 4,,k,k(U) by

',,k,k(U) = 4 ,,k,k-1(U) - [(u)] 1-'Gk(u)D,,k,k-i(u) (53)

In order to make the derived recursive formulas work, we impose the following initial

conditions

b110(u) = 0

,Ei,0(u) = E[bl(u)b "(u)] = 4 b(U)

After deriving the desired recursive equations for our image model, we are ready to apply

them to the problem addressed in Warren's work.

As mentioned previously, the importance of using innovation processes is the indepen-

dency. In what follows we transform original processes considered in the image model to

innovation processes and reformulate an equivalent hypothesis testing problem in terms of

these innovation process ak(u) and Ek,k-I (u). As a result, the equivalent hypothesis testing

problem can be described as follows.

HO: ak(u) = ak(U) - aklk-I(u)

versus (54)

H, : ak(U) = tk(U) + ak(u) - 5klk-I(U)

where ak(u) is a white Gaussian process. The reason for ak(u) being a white Gaussian

process is that ok(u) is independent and is a process resulting from a Gaussian process ak(U)

from which the predicted estimate aklk-l(u) is subtracted which is also a linear combination

of Gaussian processes.

The resulting log likelihood ratio test for this hypothesis testing problem is given by

LR,,(k)(A, XT) = log [p(a(k)Il)]

p( a(k)lH0 )

where

a(k) = [al(U), - - ,ak(U))
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Since aj(u)s are independent, the log likelihood ratio test can be further expressed by
r]- =p(or(k)IH.)1 - lo [p((aJ(uIl)

LR(k)(A,XT) = log li=lp(a(k)IHo) lg-l p(aj(ujH0)' (55)
1 k Io=1(uI()H

= .{ZElog [ u + a,(uHo)'-'(ujHo)r'U(uHo)

-j(uH)4;.,(ujHi)a H (uHI) (56)

= 1 kog+ II(uIHo)II'-L(uIH0 )
2 o =1 DjuHo) (

-Ilaj(ulni )l(b,,(ujHj) (57)

= LR ,(k_ )(A, XT) + I {log [ o,(uHI) 1

+' (lak(uHo)Ii$z,(IHo) - IIck(Ul)I, (UI HI )1 (58)

where

IIaj(ulH)I- (uIH,) = oj(uH,),,(uH,)a(uH).

The last two equations (equations (57-58)) can be regarded as two parts. The first part is

the likelihood ratio test obtained at time k - 1 which is known at time k and the second part

consisting of two terms which is made of new information obtained at time frame k under two

hypotheses. The former represents previous and predicted information; the latter updates

new information as time elapses. This fact is also demonstrated in equation (40) derived by

Warren where ak+1I1 - ak+llk,l and ak+1Io - ak+llk,o represent innovation processes generated

by the observation processes ak+lo and ak+1I1 under hypothesis H0 and H1 respectively. The

computation of the innovation process ck and DFTs of its correlation matrix can be also

recursively calculated by equations summaried as follows.

ak(U) ak(u)-aklk- (u)

Ek,k-1(U) bk(u) - bklk-(u)

o,k (U) E[ak(u)a H(u)] = A.A(X)e - 2IX

X
(ID,.k,k_,(u) -=E[(k,k_,(u)k,-(u)] = A,.k~k_,(x)e - 2 u
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't,()= C,k,k-l(U) + 4t,(u)

Gk(U) = y()akk1U4kU

bk+ijk(U) = yf(U)bkjk..1(U) + Gk(U)ak(U)

4De,k+i,k(U) =y(U)'D,,A:(U)-YH(U) + [1 - jh(u)I 2]46(U)

4),k,k(U) '(D,k,k-.(U) - [-y(u)]-'Gk(U)(,k,k.1(u)

with initial conditions given by

b11 (u) = 0; LRx(o) = 0 (59)

4D,i,,O(u) = E[b1 (U)bH'(U)] = 41b(U) (60)
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VI. Recursive Detection Algorithms for Multiple Spectral Bands

In order to extend Warren's algorithm to cover multiple spectral bands, we consider the

two-spectral-band case. The extension to multiple bands can be done straightforwardly.

Two Spectral Bands

Let x and y be two sample random vectors producing spatial images and ak(U) and ak(v)

are corresponding DFTs respectively where we use u, v to distinguish two different spectral

vectors. In general the pair of random vectors (x, y) is correlated, so is the pair (u. v). Let

ak(u,v) be the joint DFT of I(x,y) obtained based on the spatial image jointly generated

by (x, y) in spatial domain. Then

ak(u, v) = E EZ[Ik(x, y)) - 7]e - i2 '(u 'v) '(x 'Y) .

x y

where the notation dot "." denotes the inner product of two vectors.

Similarly, we can also define

bk(U, V) = E Z[Bk(x,y) - B]e - i2 r(uv)(xy)

x y

nk(U, v) = E Z[Nk(x, y) - N]e- i 2
,(uv)(xY)

x y

tk(U, V) = E Z[Tk(x, Y)]e - i21(uv) '(xY) = Ae-i2r(u'v)'(x'Y)S(u, v)
x y

Extension of Warren's Recursive Algorithm

Following the same notations in Warren's work, we denote the covariance matrix of

[Ik(X, y)] at time frame k by 4 a(X, Y)k and the DFT of 4 a(X, Y)k by 4 )a(U, V)k and related

by

4a(u, V)k = ZZ-E{[Ik(x, y) - 70][(Ik(x', y') - 7 0 ))H] }-i 27r(uv)(xY) (61)
x y

= Z Aa(x, y)ke -2w(u 'v)(x 'y). (62)
x y
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Simiflarly we can define

"Db(U, V)k = ZZAb(x, y)e2f(Uv)-(XY)
x y

4(U, V) k = E EjC 1,'(Xy)e2(UV)(XY),
x y

which yield

0.(U,V)k = b(U,V)k +On~(U,V)k under Ho; (63)

4 0a(U,V)k =tk(U,V) + 4 b(U,V)k + Dn(U.V)k under H1. (64)

Moreover, the background and noise are assume to be statistically wide-sense homoge-

neous spatially and stationary temporally. So, the DFTs 4 .)b(U,V)k and 0,(u,V)k at time k

can be actually computed by 4(u,v)j and F(u,v).

If we denote 4)(u, v), by Ob(U, v) and [ak(U, v), aki(U, V),. , ai(u, v)] by ak(u, v), War-

ren 's recursive equations can be extended to cover two spectral bands as follows.

I~u, v) [ 11 (U, V) 712 (U, V)1

Dk(U, V) =4b(U,V)[F(U,V), (1 2 )(u,V),. ,k*(V]

Aa(k +1) = [ b(u,v) D (u,v)1
SDk(U, v) Aa(k) I

zAk(U,V) Ao z(u, v) -ft(u, V)Yk(U, V)

Yk(U, V) A. '(k) Dk(u, v)

-Yk( U,v)Ak1(u,v) A.'k)uv+k(UV)Yk-(UY; l ]
zAk+ (U, V) = 4 6(u, V)(1 _ I-t(u, V)12) + 0"(U, V)(1 + I-Y(u, V) 2)

Y; 1 (U, v) = -Y,(U,V)[l - 4,(u,v)kl1 (u, v), 4,,(u, V)A 1 (u, v)Y (u, v)]
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It should be noted that the dimension of the matrix 4 b(U,V) is 2N x 2N whereas that

of 4 )b(U) is N x N.

Extension of Recursive Algorithm Using A Kalman Filter

One of nicest features of Kalman filtering approach is that the dimensionality of the state

and observation models are arbitrary and can be any finite dimensions as long as they are

appropriately aligned. This property makes an extension of the results for a single spectral

band very easy and straightforward to multiple spectral bands. As assumed earlier, let (x, y)

be two joint random vectors which generates spatial images in spatial domain and let (u, v)

be the corresponding two spectral vectors used to describe their DFTs. The results for a

single band can be easily extended as follows.

The desired two-spectral band log likelihood ratio test can be derived straightforwardly

in terms of DFTs by using the same treatment done in Section V. Namely,

LR.(k)(A, XT) = log p(a(k)[Hi) (65)
p (0(k)lH0 )

where

a(k) = [a,(u,v),.., (uv)],

and
i.V , p(ca(k) IH1) k [p(a,(u, v IHi)!LR,(k)(A,XT) = log [ = p,(u vHl)o (66)

nk1=1=lo p~~~~)p(a,(u, vj~o)'

1 k logj(u, vIH 1) ( vIHo) ,(u,vIHo) (u, v H )

E l 4%,, (u, v I0Ho) -
J=1

a, (u, v IH, ) 4),-'(u, v IHi )aH (u , v IH, )  (67)

- log 'P oj(u, vIH ,)(

-IIa(u, vHl)Ij', (u vIM) (68)
-1 [I~).kuvH )

= LR (k 1)(A,XT)+ -{log ['(D .k(U, vI Hi)]

+ {IIOk(U, vIo)I ='(U,VIH 0 )- Ilak(u, vIai)lI¢-,(UvIH1)1 (69)
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where

Ijaj(u,vH)jII_,(uivH,) = aj(u'v Hj) 1(u ' vIHj)a H (u, vIH).

and all the necessary recursive equations are summarized as follows.

Qk(U,V) ak (U,V) - akIk-I(U,V)

C,k-l(U,V) bk (uv) - bklkI(u,v)

<%,k (u,V) - E[ak(u,v)aH (u,v) I Ak(xY)e -27rux e-2 7rvy

x y

),,k,k(u,V) = [fk,k-1(u,V)+ ,I(u,v)

,k(u,v) = y(u,v) +4,k,k_(uv)(U ,v)

bk+I k(u, v) = f(u, v)bklk-(u, v) + Gk(u,v),ak(u, v)

'ID,.k+1.k(U,V) = -(u,v),.kk(u,v)y M (u,,V) +1 - Iy(u,,V)lP1jb(Uv)

4),,k,k(U, v) = 4),k,k-1(U, v) - [-(u, v)]-'Gk(u, V)",k._,(U, v)

with initial conditions given by

b1 o(U,V) = 0; LR.,(o)(A, XT) 0

= E[b,(u,v)bl'(u,v)] = Db(U,V)

Separable Spectral Correlation

As we can see from the recursive equations derived for two-spectral band in both ap-

proaches, it is very difficult to calculate correlation matrices for the background and noise,

particularly, their inverses because the dimensionality increases by 4 and correlations between

spatial images in two spectral bands must be taken into account. One way to reduce compu-

tational complexity is to assume that all the power spectra obtained from different spectral

bands are separable. In other words, under this circumstance, the observation process is
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spectral-wise (not sample-wise) correlated. Namely, if we let [ai(u,v)] = [aj(u),aj(v)] and

only correlations between sample images al(u) from one spectral band and sample images

ai(v) from the other will be considered. By doing so the power spectrum of the observation

process [a, (u), a,(v)], 4 a.(U, V)k can be much simplified and given by

4)aU IV~k E[ak(v)(ak (U))HI £ [ak(v)(ak(V) )HI]70
~a(U v~k= [E[ak(u)(ak(U))HI E[ak(V)(ak(V) )HI]70

where

E[ak(O)ak()HI = Aa(x)A(X)CZ 2 Tu-xe ei2-rv-x'
x y

E[ak(u)(ak(V) )H] = E E Aa(x)Ab(Y )ei 2 ,Uxe 2 .-v~y
x y

E[ak(v)(ak (U))H] = 1: E Aa(y)Ab(x)e-2'u'ye 2 7rv~x

y x

E[ak(v)(ak (V))H] = E E Aa(y)Ab (yI),e 2 7rUyei 2 rv-y'

y yo

Therefore,

(Db(U, v) = I : Ab(x)Ab(Y)e- 2 1rUXCi
2 7rv-y

x y

4 .(u, v) = EECn,(x)Cn(y)e-i2 ru-xe- 2 ' Y
x y

If we denote 4Di(u, v) by -(Db(u, v) and [ak(u), Gk(v), akli(u), ak..1(V),' .. , ai(u), a1 (v)] by

ak(U, V), then

AO(U, V) EDb(,V +4n(,V

-f(u 01

Dk (U, V) = $b(U, V)[F*(U, V(F(), r (F.U, V)]

Aa(k +1) = b(U, v) DZ(u, v)1
IDk (U,v) A.a(k)

ZAk(U,V) AO ~(U, V) - D(U, V)Yk(U, V)

Yk (11,V) Aa-'(k)k(U, V)
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Ak+I(U,v) = 4tb(U,v)(1 -- [(u,v){2) + n(u,v)(1 + Y(u,V)12)

- -Y(u, v)1j¢n(u, v)A k (u, v)4 (u, v)

Y;+,(u, v) = 7Y(u, v)[1 - Fn(u, v)Ak'(u, v), (u, v) - 1 (u,v)Y(u, v)]

Separable Spectral and Markov Spatial Correlation

Thus far, all derivations given above assume that DFTs of spatial images obtained from

each band are spatially correlated. In multiple-band case correlations exist not only between

spatial sample images but also between time frames. In the section of separable spectral

correlation we considered the case that sample images are spatially correlated in each band

and temporally blockwise correlated. In this section we can further reduce complexity by

assuming that the spatial correlation has Markov property. Since the processes x and y

considered in the image model are generally Gaussian, these observation processes can be

further described by Gaussian-Markov processes. One of most important properties of a

Gaussian-Markov process is that its covariance matrix can be characterized by powers of a

constant with abosulte value less than 1.

More precisely, let the covariance matrix of the random vector x be A(x), then the entry

in the position (J, 1) of A(x) can be expressed by pli-11 for some constant IpI < 1. Applying

this property to the covariance matrix of the background Bk(x), AB(x)k yields

AB(x)k = [Pi p2 l-]

where plj - 1 describes the horizontal spatial correlation between Xim and xj,m and p _m-n

indicates the vertical spatial correlation between xj,m and Xj,n.

Furthermore, using the property of spectral separability we can derive the correlation

matrix of two sample images which generate power spectra in two different bands as follows.

AB~x~y~k r1.3-tl Ira-ni Ir-sl It-Wll
AB(XY)k = [PI P2 r, 0rI2 . (71)
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where piol and P2,a 2 are horizontal and vertical spatial correlations of images x and y

respectively. Substituting equation (71) for AB(x,y)k in the recursive equations derived for

separable spectral correlation will yield a set of similar necessary recursive formulas.
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VII. Conclusion

The main theme in this report is to present an alternative to develop a new recursive al-

gorithm for thermal image detection and extend Warren's and new algorithms from a single

spectral band to multiple spectral bands. The idea to derive the new algorithm is Kalman

filter theory. This approach is more intuitive than Warren's formulation. A complete math-

ematical derivation is given. There are some future directions needed to be investigated.

(1) Adaptive techniques should be considered to improve effectiveness of suppressing back-

ground clutter. (2) In practical situations the probability laws governing the background

clutter are generally not informed. We must estimate them by virtue of sample images. For

instance, for Gaussian processes the mean and variance matrices must be estimated before

applying recursive algorithms. (3) For real time implementation, computer simulation for

results generated by this report needs to be done for synthetic images. (4) Development

of systolic architectures for implementing thermal image detectors for parallel processing is

needed to speed up computational rates. Finally, (5) An unconventional approach, neural

network should be investigated to increase the capability of thermal image detectors to adapt

the various environments.
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